

CONIC

HD Series

Harmonic Gearing Component Sets

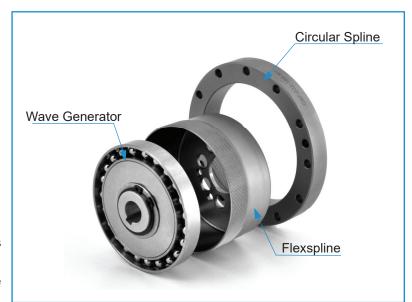
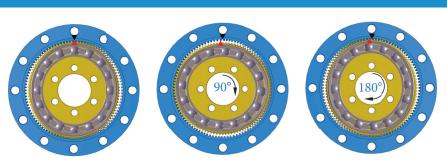
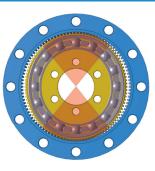

- HDC Zero Backlash Cup Series
- HDF Compact Pancake Series
- HDA Heavy Duty Pancake w/ Hubs
- HDR Heavy Duty Pancake
- HDB Back-to-Back 1:1 Pancake

Table of Contents

Se	ction	Page Number
1.	Overview	2
2.	HDC Zero Backlash Cup Series	3
3.	HDF Compact Pancake Series	8
4.	HDA Heavy Duty Pancake Series w/Hubs	11
5.	HDR Heavy Duty Pancake Series	14
6.	HDB Back-to-Back 1:1 Pancake Series	16
7.	Driving Arrangements	18
8.	Lubrication / Assembly	20
9.	Our History	22
10.	Ordering Codes	23

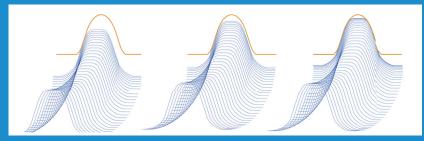

Harmonic Gearing Features and Benefits

- Zero tooth backlash maintained for the life of the unit for cup styles and low backlash for pancake styles
- Positional accuracy of +/- 1.5 arc-min and +/- 0.5 arc-min by request
- Repeatability typically within a few arc-sec
- Single stage, high reduction ratios of 50:1 to 160:1
- Low noise and heat generation
- High efficiency, torsional stiffness and torque-to-weight ratio
- High torque capacity with a large number of teeth sharing load



Harmonic Gearing Tooth Engagement

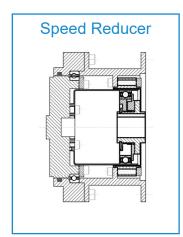
Tooth engagement between the flexspline and the circular spline takes place at two areas located 180° to each other on the ellipse's major axis. The rotation of the wave generator inside the flexspline generates relative motion between the two splines.



Example: With 100:1 ratio, 100 clockwise input motor rotations result in 1 counterclockwise output rotation.

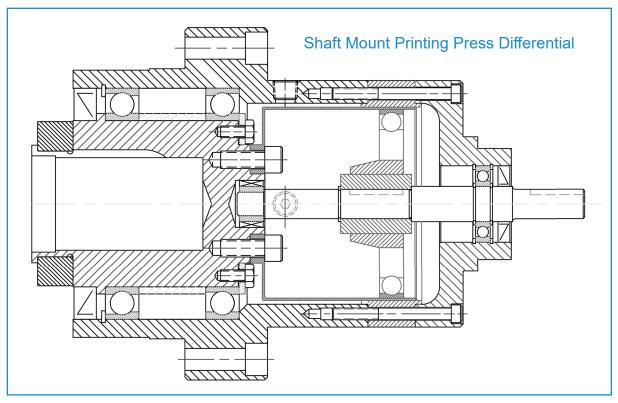
Tooth Engagement Zones

Characteristically, 30-40 percent of the teeth are engaged dependent upon the ratio, and load is shared amongst many teeth giving the drive its high torque capacity.

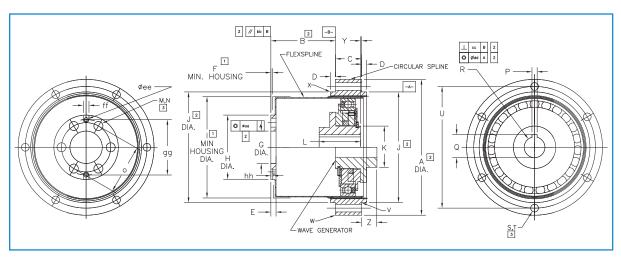


HDC Zero Backlash Cup Series

The HDC Series is a traditional, zero backlash harmonic gear set. It is an excellent choice for applications where axial space is not critical. The standard HDC includes an Oldham coupling on the wave generator input. For zero lost motion between the input motor shaft and wave generator, the wave generator can be modified for direct mounting to the input shaft. Conic manufactures three versions to easily meet most replacement applications without any modifications.

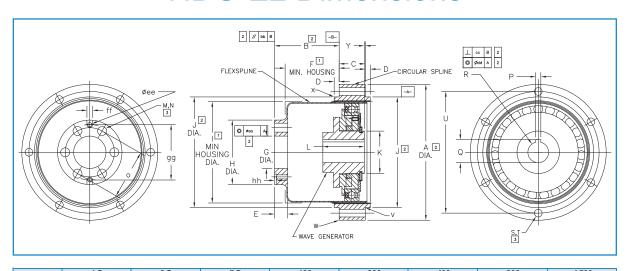


HDC Installation Examples and Model Options



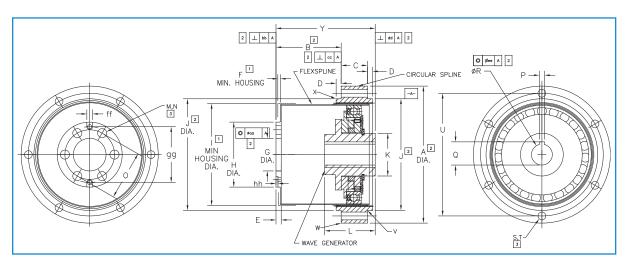
The HDC Series is offered in three model options:

- E1 English dimensioned unit that is a bolt-in replacement for early harmonic gearing sets manufactured in the USA. The flexspline mounting flange is thinner than the E2 version.
- E2 English dimensioned unit that is a bolt-in replacement for units previously manufactured in Japan. The flexspline mounting flange is thicker than the E1 version.
 - E1 and E2 units are interchangeable if care is taken to ensure proper mounting bolt lengths are used.
- M1 Industry standard metric dimensioned version.


HDC-E1 Dimensions

	1C	3C	5C	1M	2M	4M	8M	15M
ØA	2.0	2.625	3.28	4.250	5.25	6.63	8.63	10.63
В	.940 ± .015	1.270 ± .015	1.560 ± .015	2.030 ± .015	2.50 ± 020	3.204 ± .025	4.160 ± .035	5.060 ± .040
С	.38	.50	.63	.81	1.00	1.09	1.44	1.88
D	.09	.11	.12	.13	.14	.16	.19	.25
Е	.125	.125	.135	.197	.260	.260	.322	.388
F	.08	.04	.08	.08	.11	.06	.10	.12
ØG	.4375 +.0007	.6255 ^{+.0005}	.7817 +.0005 -0	1.0631 +.0006	1.2818 ^{+.0006} ₋₀	_	2.0945 +.0008	2.5633 ^{+.0008} ₋₀
ØH	.830	1.244	1.555	2.000	2.520	3.125	4.055	5.000
ØI	1.47	2.06	2.58	3.33	4.12	5.15	6.67	8.24
Ø٦	1.5000 ⁺⁰ 0012	2.1410 +00012	2.6723 ⁺⁰ 0025	3.5005 ⁺⁰ 0012	4.2818 +00013	5.3445 ⁺⁰ 0028	6.9539 ⁺⁰ 0029	8.5634 ⁺⁰ 0032
ØK	.551	.826	1.023 ⁺⁰ 001	1.023 ⁺⁰ 001	1.260 ⁺⁰ 001	1.260 ⁺⁰ 002	1.890 ⁺⁰ 002	2.165 ^{+.002} ₀₀₂
L	.63	.750 ⁺⁰ 010	1.000 +0	1.000 +0	1.500 ⁺⁰ 010	1.500 ⁺⁰ 010	1.875 ⁺⁰ 010	2.437 +0010
M	6	6	6	6	6	6	6	6
ØN	.125 +.010	.187 +.010	.218 +.010	.343 +.010	.406 +.010	.406 +.010	.531 +.010 002	.781 +.010 002
ØO	.656	.937	1.187	1.531	1.875	2.312	3.062	3.750
Р	.062 PIN	.0937 ^{+.002} ₋₀	.125 ^{+.002}	.125 ^{+.002}	.1875 ^{+.002}	.1875 ^{+.002}	.1875 ^{+.002}	.250 ^{+.002}
Q	NA	.415 ^{+.015}	.555 ^{+.015}	.555 ^{+.015}	.710 ^{+.010} ₋₀	.710 ^{+.015}	.959 ^{+.015}	1.236 +.015 -0
ØR	.250 ^{+.001}	.3750 ^{+.0004}	.5000 ^{+.0004}	.5000 ^{+.0004}	.6250 ^{+.0005}	.6250 ^{+.0005}	.8750 ^{+.0005}	1.1250 ^{+.0006}
S	6	6	6	6	6	6	6	8
ØΤ	.125 ^{+.003} ₀₀₂	.147 +.003	.187 +.010	.218 ^{+.010} ₀₀₂	.281 +.010	.406 +.010	.468 +.010 002	.468 ^{+.010} 002
ØU	1.75	2.375	2.937	3.812	4.687	5.875	7.625	9.500
V	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.
W	.016	.016	.015	.015	.015	.015	.015	.015
Х	.016	.016	.015	.015	.015	.015	.015	.015
Y	.005 +0 010	.028	.067	.099	.075	.047	.105	.088
Z	NA	.242	.361	.211	.569	.448	.562	.787
aa	.002 T.I.R.	.0017 T.I.R.	.0018 T.I.R.	.0019 T.I.R.	.0024 T.I.R.	.0026 T.I.R.	.0027 T.I.R.	.0035 T.I.R.
bb	.001	.0011	.001	.0017	.0019	.0024	.0027	.003
CC	.001 .004 T.I.R.	.002 .0017 T.I.R.	.002 .0018 T.I.R.	.002 .0019 T.I.R.	.002 .0024 T.I.R.	.002 .0026 T.I.R.	.002 .0027 T.I.R.	.002 .0035 T.I.R.
dd	.004 1.1.R. .098	.116	.116	.125	.135	.236	.0027 1.1.R. .236	.236
ee ff	.105	.116	.116	.125	.135	.236	.236	.236
	.656	.937	1.343	1.687	2.207	2.312	3.062	3.750
gg hh	.05	.05	.05	.05	.05	.05	.05	.05
1111	.00	.00	.00	.00	.00	.00	.00	.00

- DIMENSIONS DENOTE MAXIMUM EXTENT OF ENCROACHMENT ADJOINING STRUCTURE.
- DIMENSIONS ESTABLISH INTERFACE AND INSTALLATION REQUIREMENTS. MAINTAIN AT ASSEMBLY AND UNDER ALL OPERATING LOAD CONDITIONS.
- 3 USE ALLOY STEEL SCREWS TORQUED TO MAXIMUM RECOMMENDED VALUE. USE THREAD LOCKER OR OTHER MEANS TO PREVENT LOOSENING.
- 4 MAINTAINING STANDARD COMPONENTS IN "AS RECEIVED" SETS IS RECOMMENDED.
- 5 DRAWING IS FOR DIMENSIONAL REVIEW ONLY.
 DO NOT SCALE


HDC-E2 Dimensions

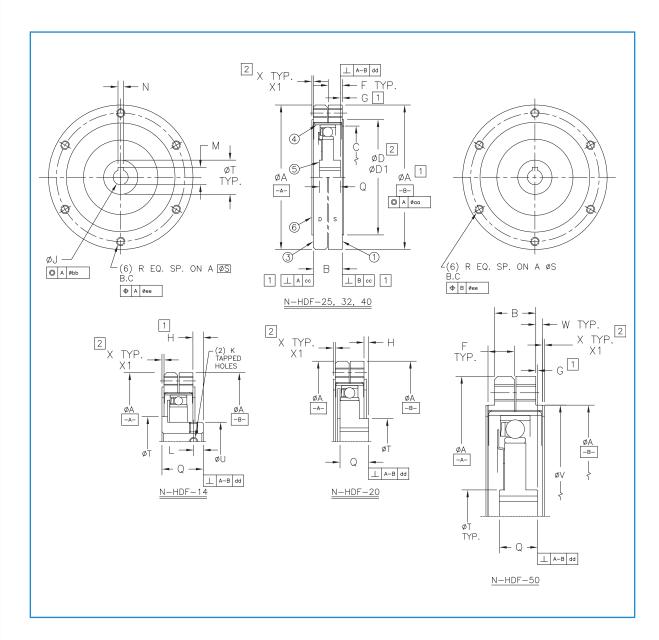
C D E	2.0 .0 ± .015 .38 .09 .247 .791	2.630 1.270 ± .015 .50 .11	3.28 1.560 ± .015 .63	4.250 2.030 ± .015	5.25 2.50 ± 020	6.63 3.204 ± .025	8.63	10.63	
C D E	.38 .09 .247	.50 .11		2.030 ± .015	2 50 + 020	3 204 + 025	4 400 + 005	E 000 01-	
D E	.09 .247 .791	.11	.63		2.00 2 020	J.207 ± .025	4.160 ± .035	$5.060 \pm .040$	
E	.247 .791			.81	1.00	1.09	1.44	1.88	
	.791		.12	.12	.14	.16	.19	.25	
_	.791	.285	.320	.386	.440	.505	.656	CONSULT	
F		1.09	1.34	1.75	2.20	2.85	3.69	CONSULT	
ØG .437	75 +.0007 -0	.6255 +.0005 -0	.7817 +.0005 -0	1.0625 +.0008	1.2818 +.0006	1.6250 +.0007	2.0937 +.0008	CONSULT	
ØH	.906	1.244	1.555	2.047	2.520	3.110	4.055	5.000	
ØI	1.50	2.09	2.56	3.31	4.10	5.12	6.66	8.24	
ØJ 1.50	00 ⁺⁰ 0012	2.1410 +00012	2.6723 +00025	3.5005 ⁺⁰ 0012	4.2818 +00013	5.3445 +0 0028	6.9539 +00029	8.5634 +00032	
øк	.551	.827	1.024	1.024	1.260	1.260	1.890	2.165	
L	.630	.750	1.000	1.000	1.500	1.500	1.880	2.437	
M	6	6	6	6	6	6	6	6	
ØN .1	25 +.010	.187 +.010	.218 +.010	.343 +.010	.406 +.010	.406 +.010 002	.531 +.010	.781 ^{+.010} ₀₀₂	
ØO	.656	.937	1.187	1.531	1.875	2.312	3.062	3.750	
	2) 4-40 et Screw	.0937 +.002	.125 ^{+.002}	.125 ^{+.002}	.1875 ^{+.002}	.1875 ^{+.002}	.1875 ^{+.002}	.250 ^{+.002} -0	
Q	NA	.415 ^{+.015}	.555 +.015 -0	.555 +.015 -0	.704 +.015 -0	.704 +.015 -0	.959 +.015 -0	1.236 ^{+.015}	
ØR .2	250 +.001 -0	.375 ^{+.001}	.500 ^{+.001}	.500 ^{+.001}	.625 ^{+.001}	.625 ^{+.001}	.875 ^{+.001}	1.1250 ^{+.0006} ₋₀	
S	6	6	6	6	6	6	6	8	
ØT .1	25 +.003 002	.147 +.010	.187 +.010	.218 +.010	.281 +.010	.406 +.010	.468 +.010	.468 +.010	
ØU	1.75	2.375	2.937	3.812	4.687	5.875	7.625	9.500	
V .00	5R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	.005R MAX.	
W	.016	.016	.015	.015	.015	.015	.015	.015	
X	.016	.016	.015	.015	.015	.015	.015	.015	
Y .01	0 +0	.028	.067	.099	.075	.047	.105	.088	
Z	NA	.242	.361	.211	.569	.448	.562	.787	
aa .00	02 T.I.R.	.002 T.I.R.	.002 T.I.R.	.003 T.I.R.	.004 T.I.R.	.005 T.I.R.	.007 T.I.R.	.007 T.I.R.	
bb	.001	.001	.001	.001	.001	.001	.001	.003	
СС	.001	.002	.002	.002	.002	.002	.002	.002	
dd .00)4 T.I.R.	.004 T.I.R.	.005 T.I.R.	.005 T.I.R.	.006 T.I.R.	.006 T.I.R.	.007 T.I.R.	.007 T.I.R.	
ee	.098	.116	.116	.125	.135	.236	.236	.236	
ff	.105	.116	.116	.125	.135	.236	.236	.236	
gg	.656	.937	1.343	1.687	2.207	2.312	3.062	3.750	
hh	.05	.05	.05	.05	.05	.05	.05	.05	

- 1 DIMENSIONS DENOTE MAXIMUM EXTENT OF ENCROACHMENT ADJOINING STRUCTURE.
- 2 DIMENSIONS ESTABLISH INTERFACE AND INSTALLATION REQUIREMENTS. MAINTAIN AT ASSEMBLY AND UNDER ALL OPERATING LOAD CONDITIONS.
- USE ALLOY STEEL SCREWS TORQUED TO MAXIMUM RECOMMENDED VALUE. USE THREAD LOCKER OR OTHER MEANS TO PREVENT LOOSENING.
- 4 MAINTAINING STANDARD COMPONENTS IN "AS RECEIVED" SETS IS RECOMMENDED.
- DRAWING IS FOR DIMENSIONAL REVIEW ONLY.
 DO NOT SCALE

HDC-M1 Dimensions

	20	25	32	40	50	65	80	100
ØA	70 ⁺⁰ 019	85 ⁺⁰ 022	110 ⁺⁰ 022	135 ⁺⁰ 025	170 ⁺⁰ 025	215 ⁺⁰ 029	265 ⁺⁰ 029	330 ⁺⁰ 036
В	31.3 ± .3	40.3 ± .3	52.3 ± .3	63.3 ± .3	80.3 ± .3	100.3 ± .3	119.3 ± .3	153.5 ± .5
С	14	16	20	25	30	40	50	60
D	3	3	3	4	4	5	6	6
Е	5.4	6.5	8.6	9.5	13.0	16.3	14.6	18
F	2	2	2	3	3	4	5	6
ØG	16 ^{+.011} -0	20 ^{+.013} -0	26 ^{+.013} -0	32 ^{+.016} -0	40 ^{+.016} -0	52 ^{+.019} -0	65 ^{+.019}	80 ^{+.019} -0
ØH	31.6	39.5	52	64	79	103	126	158
ØI	52.3	65	84.6	104.6	131	169.4	209.3	261
Ø٦	54 +0 019	67 ⁺⁰ 019	90 ⁺⁰ 022	110 ⁺⁰ 022	135 ⁺⁰ 025	177 ⁺⁰ 025	218 ⁺⁰ 029	272 ⁺⁰ 032
ØK	21	26	26	32	32	48	55	65
L	27 ⁺⁰ 1	32 ⁺⁰ 1	32 ⁺⁰ 1	40 ⁺⁰ 1	40 ⁺⁰ 1	52 ⁺⁰ 1	65 ⁺⁰ 1	70 ⁺⁰ 1
M	6	6	6	6	6	6	12	12
ØN	4.5	5.5	6.6	9	14	14	11	14
ØO	24	30	40	50	60	80	104	130
Р	3 ± .0125	4 ± .0150	5 ± .0150	5 ± .0150	6 ± .0150	8 ± .0180	8 ± .0180	8 ± .0180
Q	10.4	12.8	16.3	16.3	21.8	27.3	31.3	31.3
ØR	9 ^{+.015} -0	11 ^{+.018} -0	14 +.018 -0	14 +.018 -0	19 ^{+.021} -0	24 +.021 -0	28 ^{+.021} -0	28 ^{+.021} -0
S	6	6	6	6	6	6	8	8
ØT	3.5	4.5	5.5	6.6	9	11	11	14
ØU	60	75	100	120	150	195	240	290
V	.3	.3	.3	.3	.3	.3	.3	.3
W	.4	.4	.4	.4	.4	.4	.4	.4
Х	.4	.4	.4	.4	.4	.4	.4	.4
Υ	51.5 ± .5	63.5 ± .5	77.5 ± .6	95.5 ± .6	116.4 ± .7	146.3 ± .7	177.3 ± .7	220.2 ± .7
aa	.044	.047	.050	.063	.066	.070	.090	.110
bb	.028	.036	.044	.050	.060	.070	.080	.090
СС	.031	.033	.035	.045	.047	.049	.064	.080
dd	.025	.036	.036	.048	.048	.048	.054	.060
ee	.044	.047	.050	.063	.066	.070	.090	.110
ff	2.66	2.94	2.94	3.17	3.94	6	6	6
gg	16.66	23.80	34.11	42.85	56.06	58.72	77.77	95.25
hh	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27

- 1 DIMENSIONS DENOTE MAXIMUM EXTENT OF ENCROACHMENT ADJOINING STRUCTURE.
- 2 DIMENSIONS ESTABLISH INTERFACE AND INSTALLATION REQUIREMENTS. MAINTAIN AT ASSEMBLY AND UNDER ALL OPERATING LOAD CONDITIONS.
- USE ALLOY STEEL SCREWS TORQUED TO MAXIMUM RECOMMENDED VALUE. USE THREAD LOCKER OR OTHER MEANS TO PREVENT LOOSENING.
- MAINTAINING STANDARD COMPONENTS IN "AS RECEIVED" SETS IS RECOMMENDED.
- DRAWING IS FOR DIMENSIONAL REVIEW ONLY.
 DO NOT SCALE


HDC Specifications

		Input	nput Speed 3000rpm Input Speed 1500rpm		00rpm	Input	Speed 100	00rpm		
Size	Ratio	Output Torque	Output Speed	Input Power	Output Torque	Output Speed	Input Power	Output Torque	Output Speed	Input Power
		Nm	rpm	kw	Nm	rpm	kw	Nm	rpm	kw
English: 1C	64	4.5	46.9	0.025	4.5	23.4	0.012	4.5	15.6	0.008
Liigiisii. 10	80	5	37.5	0.025	5.5	18.8	0.013	5.5	12.5	0.009
Metric: 17	80	12	37.5	0.059	12	18.8	0.029	12	12.5	0.019
	100	15	30	0.059	16.5	15	0.031	17	10	0.021
	80	25	37.5	0.123	25	18.8	0.059	25	12.5	0.039
English: 3C	84	25	35.7	0.117	25	17.9	0.056	25	11.9	0.037
Metric: 20	100	30	30	0.118	33	15	0.062	33.6	10	0.041
	125	30	24	0.097	37.5	12	0.058	43.5	8	0.044
	80	40	37.5	0.197	40	18.8	0.094	40	12.5	0.062
English: 5C	100	50	30	0.197	55	15 40.5	0.104	56	10	0.069
Metric: 25	120	50 50	25	0.169	62.5	12.5	0.101	72.5	8.3	0.074
	150	50	20	0.146	62.5	10	0.085	72.5	6.7	0.062
	160 80	50 100	18.8	0.139 0.493	62.5 100	9.4 18.8	0.078 0.235	72.5 100	6.3 12.5	0.057
	100	120	37.5 30	0.493	132	18.8	0.235	135	12.5	0.153 0.165
English: 1M	135	120	22.2	0.473	150	11.2	0.246	175	7.5	0.163
Metric: 32	160	120	18.8	0.303	150	9.4	0.215	175	6.3	0.163
	200	120	15.0	0.312	150	7.5	0.165	175	5	0.140
	80	200	37.5	0.204	200	18.8	0.469	200	12.5	0.305
	84	200	35.7	0.939	200	17.9	0.447	200	11.9	0.291
	100	240	30	0.947	265	15	0.497	270	10	0.330
English: 2M	125	240	24	0.777	300	12	0.462	300	8	0.300
Metric: 40	160	240	18.8	0.624	300	9.4	0.370	300	6.3	0.240
	168	240	17.9	0.594	300	8.9	0.352	300	6	0.228
	200	240	15	0.527	300	7.5	0.312	300	5	0.202
	80	360	37.5	1.775	360	18.8	0.844	360	12.5	0.549
	100	450	30	1.775	495	15	0.929	505	10	0.617
English: 4M	120	450	25	1.518	550	12.5	0.881	600	8.3	0.625
Metric: 50	150	450	20	1.25	550	10	0.723	600	6.7	0.513
	160	450	18.8	1.169	550	9.4	0.678	600	6.3	0.481
	200	450	15	0.989	550	7.5	0.572	600	5	0.405
	80				800	18.8	1.876	800	12.5	1.221
	100				900	15	1.689	1015	10	1.282
English: 8M	134				1000	11.2	1.435	1150	7.5	1.073
Metric: 65	160				1000	9.4	1.233	1150	6.3	0.921
	200				1000	7.5	1.040	1150	5	0.776
	267				1000	5.6	0.823	1150	3.7	0.614
	80				1500	18.8	3.518	1500	12.5	2.289
	100				1800	15	3.377	2000	10	2.442
English: 15M	125				2000	12	3.077	2300	8	2.301
Metric: 80	168				2000	8.9	2.348	2300	6	1.755
	200				2000	7.5	2.079	2300	5	1.552
	250				2000	6	1.758	2300	4	1.311
	80				2500	18.8	5.863	2500	12.5	3.816
	100				3500	15 12.5	6.567	3650	10	4.457
	120				3500	12.5	5.609	4000	8.3	4.169
Metric: 100	150 160				3500	10	4.602	4000	6.7	3.419
	160				3500	9.4	4.315	4000	6.3	3.205
	200				3500	7.5	3.638	4000	5	2.699
	250				3500	6	3.077	4000	4	2.280
	315				3500	4.8	2.514	4000	3.2	1.920

HDF Compact Pancake Series

The HDF Series offers the shortest axial length of all harmonic gearing components. It is designed for applications where space is the primary constraint. The drive utilizes a single wave generator bearing and is recommended for light duty speed reduction and phase shifting applications. The HDF offers low backlash, standard ratios ranging from 64:1 to 200:1, and torque capacities up to 1000 Nm. Custom drives are available upon request.

HDF-M1 Dimensions

	14	20	25	32	40	50
ØA	50 +0 015	70 +0 018	85 +0 023	110 +0 025	135 +0 025	170 +0 025
В	10.7 ± .15	12.7 ± .15	17 ± .25	21 ± .25	27 ± .30	25 ± .30
ØC	32 ± .51	47 ± .51	59 ± .51	77 ± .51	95 ± .51	119 ± .51
ØD	39.5 ± .51	54 ± .51	69.4 ± .51	92.1 ± .51	111.1 ± .51	134.4 ± .51
ØD1	40.2 ± .51	54.7 ± .51	70.2 ± .51	92.9 ± .51	111.9 ± .51	135.2 ± .51
F	5 ± .1	6 ± .1	8 ± .2	10 ± .2	13 ± .2	16 ± .2
G	-	-	.38 ± .38	.94 ± .38	1.8 ± .38	1.12 ± .38
Н	3.76 ± .38	.94 ± .38	-	-	-	-
Ø٦	6 ^{+.012} -0	9 +.015 -0	11 +.018 -0	14 +.020 -0	14 +.020 -0	19 ^{+.020} -0
K	M3 x 0.5	-	-	-	-	-
L	3.5 ± .38	-	-	-	-	-
ØM	-	10.4 +.1 -0	12.8 +.1 -0	16.3 +.1 -0	16.3 +.1 -0	21.8 +.1 -0
N	-	3 ± .0125	4 ± .013	5 ± .013	5 ± .013	6 ± .013
Q	15.0	11.4	12.8	15.6	19.4	23.2
R	M3 x 0.5	M4 x 0.7	M5 x 0.8	M6 x 1.0	M8 x 1.25	M10 x 1.5
S	44	60	75	100	120	150
ØT	18	20	28	36	32	50
ØU	14	-	-	-	-	-
ØV	-	-	-	-	-	135 +0 025
W	-	-	-	-	-	4.52 ± .1
Х	.81 ± .13	.81 ± .13	.81 ± .13	.81 ± .13	1.57 ± .13	1.57 ± .13
X1	.94 +.13 -0	.94 +.13 -0	.94 +.13 -0	.94 +.13 -0	1.70 +.13 -0	1.70 +.13 -0
aa	.050	.070	.076	.078	.088	.098
bb	.013	.013	.015	.015	.018	.020
CC	.018	.018	.023	.025	.025	.025
dd	.010	.010	.013	.013	.013	.015
ee	.25	.25	.25	.25	.25	.25
Weight kg (lb)	.09 (.2)	.32 (.7)	.59 (1.3)	1.04 (2.3)	2 (4.4)	3.31 (7.3)

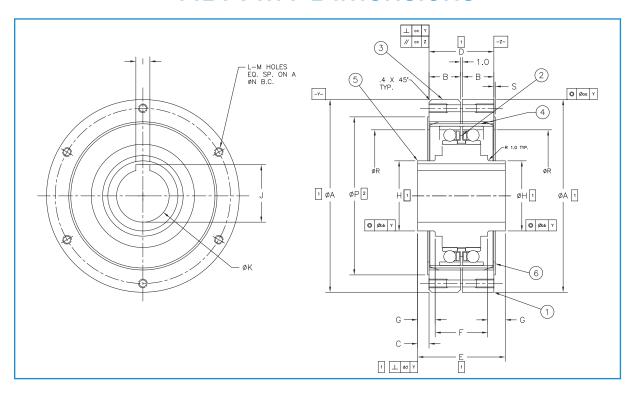
- A ITEM 1 STATIC CIRCULAR SPLINE MARKED "S" ITEM 2 ONLY APPEARS WITH HDR & HDA
 - ITEM 3 DYNAMIC CIRCULAR SPLINE MARKED "D"
 - ITEM 4 FLEXSPLINE
 - ITEM 5 WAVE GENERATOR
 - ITEM 6 WEAR WASHERS

- B DIMENSIONS MARKED 1 ESTABLISH INTERFACE AND INSTALLATION REQUIREMENTS, AND MUST BE MAINTAINED UNDER ALL OPERATING CONDITIONS.
- DIMENSIONS MARKED 2 ARE NECESSARY TO LOCATE WEAR WASHERS, ITEM 6, IN CORRECT POSITION.
- D HDF 50 CAN BE LOCATED ON THE OUTER DIAMETER OF THE CIRCULAR SPLINE, DIMENSION A, OR ON THE PLOT DIAMETER DIMENSION V.
- DRAWING IS FOR DIMENSIONAL REVIEW ONLY. **DO NOT SCALE**

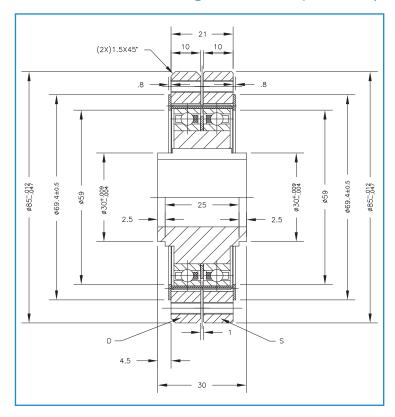
HDF Specifications

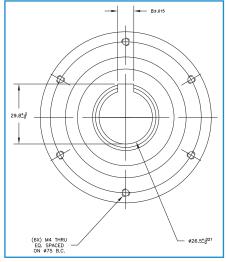
		Input	Speed 300	00rpm	Input	Speed 150	00rpm	Input	Speed 100	00rpm
Size	Ratio	Output Torque	Output Speed	Input Power	Output Torque	Output Speed	Input Power	Output Torque	Output Speed	Input Power
		Nm	rpm	kw	Nm	rpm	kw	Nm	rpm	kw
14	64	3	46.9	0.023	3	23.4	0.012	3.5	15.6	0.009
	80	3.5	37.5	0.022	3.5	18.8	0.011	4	12.5	0.009
	80	15	37.5	0.096	15	18.8	0.049	15	12.5	0.033
	84	15	35.7	0.092	15	17.9	0.047	15	11.9	0.031
20	100	18	30	0.092	20	15	0.052	22	10	0.038
	120	20	25	0.085	22.5	12.5	0.049	25	8.3	0.036
	126	20	23.8	0.081	22.5	11.9	0.047	25	7.9	0.034
	80	25	37.5	0.160	25	18.8	0.082	27.5	12.5	0.060
	100	30	30	0.154	33	15	0.086	35	10	0.061
25	120	32	25	0.137	35	12.5	0.076	38	8.3	0.055
	150	36	20	0.134	40	10	0.070	43.5	6.7	0.051
	160	36	18.8	0.126	40	9.4	0.066	40	6.3	0.043
	80	55	37.5	0.353	55	18.8	0.180	55	12.5	0.120
	100	70	30	0.359	77	15	0.202	80	10	0.140
32	135	80	22.2	0.332	88	11.1	0.170	97	7.4	0.125
	160	85	18.8	0.297	93.5	9.4	0.153	102	6.3	0.112
	200	85	15	0.238	93.5	7.5	0.122	102	5	0.089
	80	100	37.5	0.641	100	18.8	0.328	100	12.5	0.218
	84	100	35.7	0.610	100	17.9	0.312	100	11.9	0.208
40	100	120	30	0.615	132	15	0.346	135	10	0.236
40	125	135	24	0.554	150	12	0.314	150	8	0.209
	160	150	18.8	0.524	165	9.4	0.271	165	6.3	0.181
	168	150	17.9	0.499	165	8.9	0.256	165	6	0.173
	80	180	37.5	1.154	180	18.8	0.59	180	12.5	0.393
	100	220	30	1.128	240	15	0.628	245	10	0.428
50	120	250	25	1.068	275	12.5	0.6	280	8.3	0.406
	150	280	20	1.044	310	10	0.544	320	6.7	0.374
	160	280	18.8	0.979	310	9.4	0.509	320	6.3	0.352
	200	280	17.9	0.783	310	7.5	0.406	320	5	0.279
	80				480	18.8	1.420	480	12.5	1.047
	100				540	15	1.278	605	10	1.055
65	135				625	11.2	1.148	700	7.4	0.904
	160				650	9.4	1.041	715	6.3	0.786
	200				650	7.5	0.833	715	5	0.624
	80				900	18.8	2.663	900	12.5	1.963
	100				950	15	2.249	990	10	1.728
80	125				1000	12	1.985	1100	8	1.536
	168				1000	8.9	1.57	1100	6	1.151
	200				1000	7.5	1.374	1100	5	0.960

HDA Heavy Duty Pancake Series w/Hubs


The HDA Series is a heavy duty pancake design that utilizes a double bearing wave generator and wider splines. It also includes an extended wave generator hub for mounting bearings and features a large through bore. The HDA is commonly used in differential applications where shock loads are present, such as corrugated machinery and printing press cutters. The HDA offers low backlash and standard ratios from 80:1 to 200:1 with torque capacities up to 2000 Nm. Custom drives are available upon request.

HDA Specifications


	Marrier	un luccost		Input	Speed 300	00 rpm	Input	Speed 150	00 rpm	Input	Speed 10	00 rpm
Size	Maximu Spe		Ratio	Output	Output	Input	Output	Output	Input	Output	Output	Input
Size	Spe	eeu	Kalio	Torque	Speed	Power	Torque	Speed	Power	Torque	Speed	Power
	Grease	Oil		Nm	rpm	kw	Nm	rpm	kw	Nm	rpm	kw
			80	25	37.5	0.123	25	18.8	0.059	25	12.5	0.039
			84	25	35.7	0.117	25	17.9	0.056	25	11.9	0.037
20	3500	5000	100	30	30	0.118	33	15	0.062	33.6	10	0.041
			120	30	25	0.101	37.5	25	0.06	33.6	25	0.042
			126	30	24	0.097	37.5	12	0.058	43.5	8	0.044
			80	40	37.5	0.197	40	18.8	0.094	40	12.5	0.062
			100	50	30	0.197	55	15	0.104	56	10	0.069
25	3000	5000	120	50	25	0.169	62.5	12.5	0.101	72.5	8.3	0.074
			150	50	20	0.146	62.5	10	0.085	72.5	6.7	0.062
			160	50	18.8	0.139	62.5	9.4	0.078	72.5	6.3	0.057
			80	100	37.5	0.493	100	18.8	0.235	100	12.5	0.153
			100	120	30	0.473	132	15	0.248	135	10	0.165
32	3000	4500	135	120	22.2	0.363	150	11.2	0.215	175	7.5	0.163
			160	120	18.8	0.312	150	9.4	0.185	175	6.3	0.014
			200	120	15	0.264	150	7.5	0.156	175	5	0.118
			80	200	37.5	0.986	200	18.8	0.469	200	12.5	0.305
			84	200	35.7	0.939	200	17.9	0.447	200	11.9	0.291
			100	240	30	0.947	265	15	0.497	270	10	0.33
40	3000	4500	125	240	24	0.777	300	12	0.462	300	8	0.3
			160	240	18.8	0.624	300	9.4	0.37	300	6.3	0.24
			168	240	17.9	0.594	300	8.9	0.352	300	6	0.228
			200	240	15	0.527	300	7.5	0.312	300	5	0.202
			80	360	37.5	1.775	360	18.8	0.844	360	12.5	0.549
			100	450	30	1.775	495	15	0.929	505	10	0.617
			120	450	25	1.518	550	12.5	0.881	600	8.3	0.625
50	2500	3500	150	450	20	1.25	550	10	0.723	600	6.7	0.513
			160	450	18.8	1.169	550	9.4	0.678	600	6.3	0.481
			200	450	15	0.989	550	7.5	0.572	600	5	0.405
			80	.00		0.000	800	18.8	1.876	800	12.5	1.221
			96				900	15.6	1.76	1015	10.4	1.335
			100				900	15	1.689	1015	10	1.282
			126				1000	11.9	1.558	1150	7.9	1.162
65	1750	1750	132				1000	11.4	1.487	1150	7.6	1.11
			135				1000	11.2	1.454	1150	7.4	1.086
			160				1000	9.4	1.233	1150	6.3	0.921
			200				1000	7.5	1.04	1150	5	0.776
			80				1500	18.8	3.518	1500	12.5	2.289
			100				1800	15	3.377	2000	10	2.442
			125				2000	12	3.077	2300	8	2.301
80	1500	1500	168				2000	8.9	2.348	2300	6	1.755
		1300	200				2000	8.9	2.079	2300	5	1.552
			250				2000	6	1.758	2300	4	1.332
			230				2000	U	1.750	2300	+	1.311


HDA-M1 Dimensions

	20	25	32	40	50	65	
ØA	70010 040	85012 047	110012 047	135014 054	170014 054	215015 061	
В	12	14	18	21	26	35	
С	6.5	5.5	6.5	12.5	12.5	8	
D	25	29	37	43	53	71	
E	38	40	50	68	78	87	
F	21.5	25	30	44	54	59	
G	8.25	7.5	10	12	12	14	
ØН	20 +.009 004	30 +.009 004	40 +.011 005	50 +.011 005	60 +.012 007	70 +.012 007	
I	4 ± .015	6 ± .015	8 ± .018	10 ± .018	12 ± .0215	14 ± .0215	
J	13.8	22.8	33.3	38.3	43.3	53.8	
øк	12 +.018 -0	20 +.021 -0	30 +.021 -0	35 +.025 -0	40 +.025 -0	50 +.025 -0	
L	6	6	6	6	6	6	
M	M3 x 6 DP	M4 x 8 DP	M5 x 10 DP	M6 x 12 DP	M8 x 16 DP	M10 x 20 DP	
ØN	60	75	100	120	150	195	
ØP	54 ± .5	69.4 ± .5	92 ± .5	111 ± .5	134.4 ± .5	176 ± .5	
ØR	47	59	77	95	119	150	
S	.8	.8	.8	1.6	1.6	1.6	
aa	.016	.016	.017	.019	.024	.027	
bb	.013	.016	.016	.017	.021	.025	
СС	.017	.024	.026	.026	.028	.034	
dd	.010	.012	.012	.012	.015	.015	
Weight kg (lb)	.6 (1.3)	1 (2.2)	2 (4.4)	3.6 (7.9)	7.2 (16)	14 (31)	

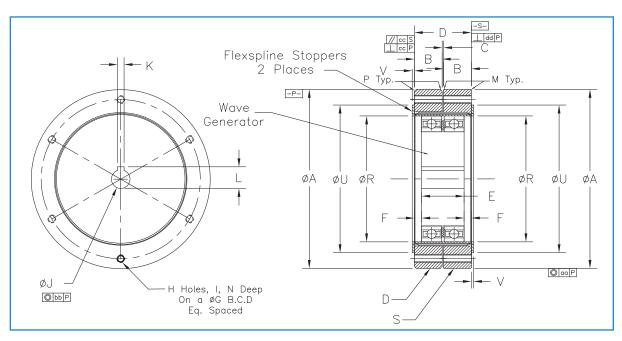
Custom Large Bore Option* (Size 25 Example)

* Customers requiring large bores, custom wave generators or splines are encouraged to contact Conic Systems for availability information. Conic Systems strives to meet its customers' application requirements and will modify its component sets to suit most application needs.

HDA-M1 DRAWING NOTES

- | ITEM 1 STATIC CIRCULAR SPLINE MARKED "S"
 - ITEM 2 ONLY APPEARS WITH HDR & HDA
 - ITEM 3 DYNAMIC CIRCULAR SPLINE MARKED "D"
 - ITEM 4 FLEXSPLINE
 - ITEM 5 WAVE GENERATOR
 - ITEM 6 WEAR WASHERS

- B DIMENSIONS MARKED 1 ESTABLISH INTERFACE AND INSTALLATION REQUIREMENTS, AND MUST BE MAINTAINED UNDER ALL OPERATING CONDITIONS.
- DIMENSIONS MARKED 2 ARE NECESSARY TO LOCATE WEAR WASHERS, ITEM 6, IN CORRECT POSITION.
- DRAWING IS FOR DIMENSIONAL REVIEW ONLY.
 DO NOT SCALE


HDR Heavy Duty Pancake Series

The HDR Series is a heavy duty pancake design that utilizes a double bearing wave generator and wider splines than the HDF Series. The HDR is commonly used in heavy service load applications where shock loads are present, such as corrugated machinery and printing press cutters. The HDR offers low backlash and standard ratios from 80:1 to 200:1 with torque capacities up to 2000 Nm. Custom drives are available upon request.

	Massimass	m Input		Input	Speed 300	00 rpm	Input	Speed 150	00 rpm	Input	Speed 10	00 rpm
Size		eed	Ratio	Output Torque	Output Speed	Input Power	Output Torque	Output Speed	Input Power	Output Torque	Output Speed	Input Power
	Grease	Oil		Nm	rpm	kw	Nm	rpm	kw	Nm	rpm	kw
			80	25	37.5	0.123	25	18.8	0.059	25	12.5	0.039
			84	25	35.7	0.117	25	17.9	0.056	25	11.9	0.037
20	3500	5000	100	30	30	0.118	33	15	0.062	33.6	10	0.041
			120	30	25	0.101	37.5	25	0.06	33.6	25	0.042
			126	30	24	0.097	37.5	12	0.058	43.5	8	0.044
			80	40	37.5	0.197	40	18.8	0.094	40	12.5	0.062
			100	50	30	0.197	55	15	0.104	56	10	0.069
25	3000	5000	120	50	25	0.169	62.5	12.5	0.101	72.5	8.3	0.074
			150	50	20	0.146	62.5	10	0.085	72.5	6.7	0.062
			160	50	18.8	0.139	62.5	9.4	0.078	72.5	6.3	0.057
			80	100	37.5	0.493	100	18.8	0.235	100	12.5	0.153
			100	120	30	0.473	132	15	0.248	135	10	0.165
32	3000	4500	135	120	22.2	0.363	150	11.2	0.215	175	7.5	0.163
			160	120	18.8	0.312	150	9.4	0.185	175	6.3	0.014
			200	120	15	0.264	150	7.5	0.156	175	5	0.118
			80	200	37.5	0.986	200	18.8	0.469	200	12.5	0.305
			84	200	35.7	0.939	200	17.9	0.447	200	11.9	0.291
			100	240	30	0.947	265	15	0.497	270	10	0.33
40	3000	4500	125	240	24	0.777	300	12	0.462	300	8	0.3
			160	240	18.8	0.624	300	9.4	0.37	300	6.3	0.24
			168	240	17.9	0.594	300	8.9	0.352	300	6	0.228
			200	240	15	0.527	300	7.5	0.312	300	5	0.202
			80	360	37.5	1.775	360	18.8	0.844	360	12.5	0.549
			100	450	30	1.775	495	15	0.929	505	10	0.617
50	2500	3500	120	450	25	1.518	550	12.5	0.881	600	8.3	0.625
30	2300	3300	150	450	20	1.25	550	10	0.723	600	6.7	0.513
			160	450	18.8	1.169	550	9.4	0.678	600	6.3	0.481
			200	450	15	0.989	550	7.5	0.572	600	5	0.405
			80				800	18.8	1.876	800	12.5	1.221
			96				900	15.6	1.76	1015	10.4	1.335
			100				900	15	1.689	1015	10	1.282
65	1750	1750	126				1000	11.9	1.558	1150	7.9	1.162
00	1700	1700	132				1000	11.4	1.487	1150	7.6	1.11
			135				1000	11.2	1.454	1150	7.4	1.086
			160				1000	9.4	1.233	1150	6.3	0.921
			200				1000	7.5	1.04	1150	5	0.776
			80				1500	18.8	3.518	1500	12.5	2.289
			100				1800	15	3.377	2000	10	2.442
80	1500	1500	125				2000	12	3.077	2300	8	2.301
30	1300	1500 1500	168				2000	8.9	2.348	2300	6	1.755
			200				2000	8.9	2.079	2300	5	1.552
			250				2000	6	1.758	2300	4	1.311

HDR-M1 Dimensions

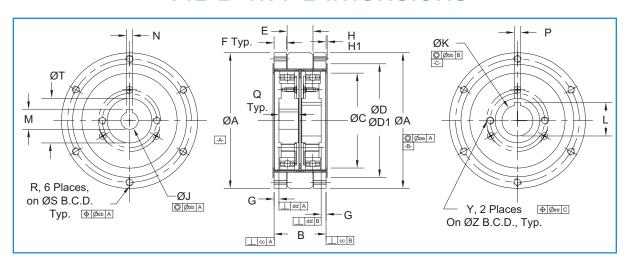
			Size				
	20	25	32	40	50	65	
ØA	70 +0 -0.019	85 +0 -0.022	110 +0 -0.022	135 +0 -0.025	170 +0 -0.025	215 +0 -0.029	
В	12	14	18	21	26	35	
С	1	1	1	1	1	1	
D	25	29	37	43	53	71	
E	17.3	20	25.9	31.5	39.1	50.5	
F	3.85	4.5	5.55	5.75	6.95	10.25	
ØG	60	75	100	120	150	195	
Н	6	6	6	6	6	6	
I	M3x0.5	M4x0.7	M5x0.8	M6x1	M8x1.25	M10x1.5	
ØJ	9 +0.015 -0	11 +0.018 -0	14 +0.018 -0	14 +0.018 -0	19 ^{+0.021} -0	24 +0.021 -0	
ØK	3 ±0.0125	4 ±0.015	5 ±0.015	5 ±0.015	6 ±0.015	6 ±0.018	
L	10.4	12.8	16.3	16.3	21.8	27.3	
M	0.4	0.4	0.4	0.4	0.4	0.4	
N	6	8	10	12	16	20	
ØR	47	59	77	95	119	150	
ØU	54.8	69.7	92.6	111.4	135	177	
V	1 +0.13 -0	1 +0.13 -0	1 +0.13 -0	1.78 +0.13 -0	1.78 ^{+0.13} ₋₀	1.78 ^{+0.13} -0	
aa	0.016	0.016	0.017	0.019	0.024	0.027	
dd	0.01	0.012	0.012	0.012	0.015	0.015	
СС	0.017	0.024	0.026	0.026	0.028	0.034	
bb	0.013	0.016	0.016	0.017	0.021	0.025	
Weight kg (lb)	0.5 (1.1)	0.8 (1.8)	1.7 (3.7)	3 (6.6)	6 (13.2)	12 (26.5)	

HDA-M1 DRAWING NOTES

- A ITEM 1 STATIC CIRCULAR SPLINE MARKED "S" ONLY APPEARS WITH HDR & HDA
 - ITEM 3 DYNAMIC CIRCULAR SPLINE MARKED "D"
 - ITEM 4 FLEXSPLINE
 - ITEM 5 WAVE GENERATOR
 - ITEM 6 WEAR WASHERS

- B DIMENSIONS MARKED 1 ESTABLISH INTERFACE AND INSTALLATION REQUIREMENTS, AND MUST BE MAINTAINED UNDER ALL OPERATING CONDITIONS.
- C DIMENSIONS MARKED 2 ARE NECESSARY TO LOCATE WEAR WASHERS, ITEM 6, IN CORRECT POSITION.
- D DRAWING IS FOR DIMENSIONAL REVIEW ONLY. **DO NOT SCALE**

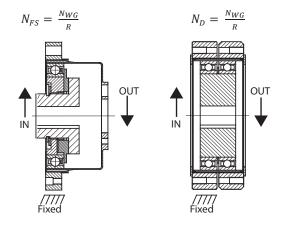
HDB Back-to-Back 1:1 Pancake Series


The HDB Series is a 1:1 double pancake design used for phase shifting differential applications. It is most often used in printing, converting, and packaging machinery where the wave generator is held stationary except when making intermittent registration / phase shifting adjustments. Conic Systems also offers the HDB packaged in a complete shaft mount differential gearbox.

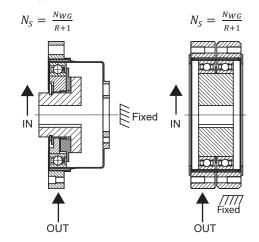
HDB Specifications

		Input S	Speed 30	000rpm	Input S	peed 15	00rpm	Input S	Speed 10	000rpm
Size	Ratio	Output	Output	Input	Output	Output	Input	Output	Output	Input
		Torque	Speed	Power	Torque	Speed	Power	Torque	Speed	Power
		Nm	rpm	kw	Nm	rpm	kw	Nm	rpm	kw
	80	15	37.5	0.096	15	18.8	0.049	15	12.5	0.033
	84	15	35.7	0.092	15	17.9	0.047	15	11.9	0.031
20	100	18	30	0.092	20	15	0.052	22	10	0.038
	120	20	25	0.085	22.5	12.5	0.049	25	8.3	0.036
	126	20	23.8	0.081	22.5	11.9	0.047	25	7.9	0.034
	80	25	37.5	0.160	25	18.8	0.082	27.5	12.5	0.060
	100	30	30	0.154	33	15	0.086	35	10	0.061
25	120	32	25	0.137	35	12.5	0.076	38	8.3	0.055
	150	36	20	0.134	40	10	0.070	43.5	6.7	0.051
	160	36	18.8	0.126	40	9.4	0.066	40	6.3	0.043
	80	55	37.5	0.353	55	18.8	0.180	55	12.5	0.120
	100	70	30	0.359	77	15	0.202	80	10	0.140
32	135	80	22.2	0.332	88	11.1	0.170	97	7.4	0.125
	160	85	18.8	0.297	93.5	9.4	0.153	102	6.3	0.112
	200	85	15	0.238	93.5	7.5	0.122	102	5	0.089
	80	100	37.5	0.641	100	18.8	0.328	100	12.5	0.218
	84	100	35.7	0.610	100	17.9	0.312	100	11.9	0.208
40	100	120	30	0.615	132	15	0.346	135	10	0.236
40	125	135	24	0.554	150	12	0.314	150	8	0.209
	160	150	18.8	0.524	165	9.4	0.271	165	6.3	0.181
	168	150	17.9	0.499	165	8.9	0.256	165	6	0.173
	80	180	37.5	1.154	180	18.8	0.59	180	12.5	0.393
	100	220	30	1.128	240	15	0.628	245	10	0.428
50	120	250	25	1.068	275	12.5	0.6	280	8.3	0.406
30	150	280	20	1.044	310	10	0.544	320	6.7	0.374
	160	280	18.8	0.979	310	9.4	0.509	320	6.3	0.352
	200	280	17.9	0.783	310	7.5	0.406	320	5	0.279

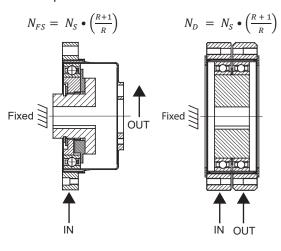
HDB-M1 Dimensions


	20		25		32		40		50	
ØA	70	+0 -0.018	85	+0 -0.022	110	+0 -0.025	134	+0 -0.025	170	+0 -0.025
В	26.5 +0.25 -0		34.8 ^{+0.25} ₋₀		42 ^{+0.6} ₋₀		56.5 +0.8 -0		See Drawing	
ØC	47	±0.51	59	±0.51	77	±0.51	95	±0.51	119	±0.51
ØD	54	±0.51	69.4	±0.51	92.1	±0.51	111.1	±0.51	134.4	±0.51
ØD1	54.7	+0.51 -0	70.2	+0.51 -0	92.9	+0.38 -0	92.9	+0.38 -0	135.2	+0.38 -0
E	14	±0.1	18	±0.1	20.9	±0.1	28	±0.1	35	±0.2
F	6	±0.1	8	±0.2	10	±0.2	13	±0.2	13	±0.2
G	1.8	±0.51	3.27	±0.51	3.95	±0.51	1.95	±0.51	1.4	±0.51
Н	0.81	±0.13	0.81	±0.13	0.81	±0.13	1.57	±0.13	1.57	±0.13
H1	0.94	+0.13 -0	0.94	+0.13 -0	0.94	+0.13 -0	1.69	+0.13 -0	1.69	+0.13 -0
Ø٦	9	+0.015 -0	11	+0.018 -0	14	+0.02 -0.02	14	+0.02 -0.02	19	+0.02 -0.02
øк	16	+0.013 -0	19	+0.013 -0	25	+0.02 -0	25	+0.02 -0	35	+0.023 -0
L	17.4	±0.1	20.8	±0.1	27.3	±0.2	27.3	±0.2	38.3	±0.2
М	10.4	+0.1 -0	12.8	+0.1 -0	16.3	+0.1 -0	16.3	+0.1 -0	21.8	+0.1 -0
N	3	±0.0125	4	±0.013	5	±0.013	5	±0.013	6	±0.013
Р	3 ±0.0125		4 ±0.013		5 ±0.013		5 ±0.013		10 ±0.023	
Q	11.4		12.8		15.6		19.4		23.2	
R	M4x0.7		M5x0.8		M6x1		M8x1.25		M10x1.5	
ØS	60		75		100		120		150	
ØT	20		28		36		32		50	
Υ	M4x0.7		M4x0.7		M6x1		M8x1.25		M8x1.25	
ØZ	27		35		44		48		65	
aa	0.07		0.076		0.078		0.088		0.098	
bb	0.013		0.015		0.015		0.018		0.02	
CC	0.018 0.01		0.023 0.013		0.025		0.025 0.013		0.025	
dd	0.01		0.013		0.013 0.25		0.013		0.015 0.25	
ee Weight kg (lb)	0.25		1.23 (2.70)		2.14 (4.70)		4.09 (9.00)		6.9 (15.3)	
weight kg (ib)	0.7 (1.50)		1.23 (2.10)		2.14 (4.70)		Ŧ.UƏ (Ə.UU)		0.9 (13.3)	

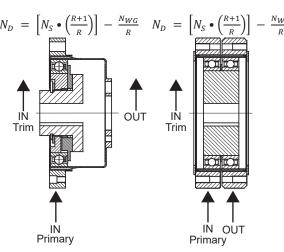
Driving Arrangements

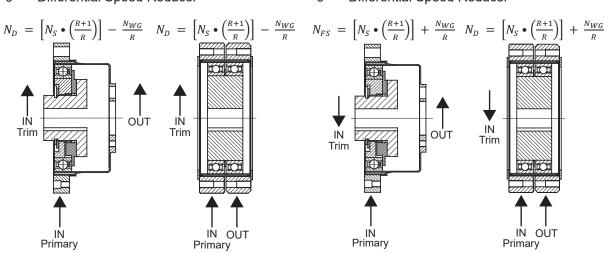

Conic Systems harmonic gearing can be used with a number of input, output, and fixed element drive variations for speed reduction, speed increasing, and phasing differential applications. The arrangements that apply are illustrated below.

Cup Type: Pancake Type: FS Flexspline Flexspline Circular Spline Circular Spline N Speed (RPM) Speed (RPM) Ratio Ratio Wave Generator WG Wave Generator Dynamic Spline

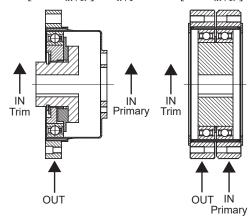

1 Speed Reducer

2 Speed Reducer

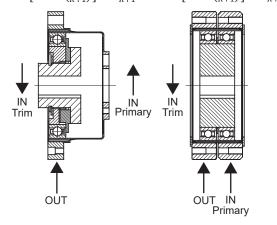

Speed Increaser


Speed Reducer

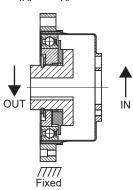
Differential Speed Reducer



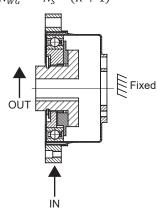
Differential Speed Reducer


Differential Speed Reducer

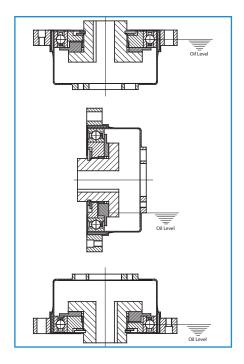
$$N_S \ = \ \left[N_{FS} \bullet \left(\frac{R}{R+1} \right) \right] \ + \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ + \ \frac{N_{WG}}{R+1} \qquad N_S \ = \ \left[N_{FS} \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] \ - \ \frac{N_{WG}}{R+1} \quad N_S \ = \ \frac{N_{WG}}{R+1} \quad N_S \$$

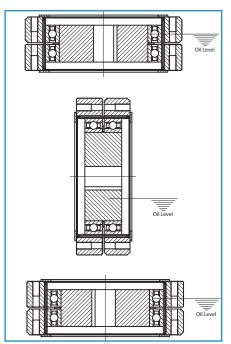

Differential Speed Reducer

$$N_S = \left[N_{FS} \bullet \left(\frac{R}{R+1} \right) \right] - \frac{N_{WG}}{R+1} \quad N_S = \left[N_D \bullet \left(\frac{R}{R+1} \right) \right] - \frac{N_{WG}}{R+1}$$


9 Speed Increaser 1:R

$$N_{WG} = N_{FS} \bullet R$$


10 Speed Increaser 1:(R+1)

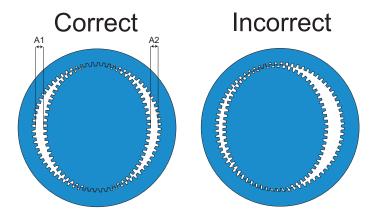

$$N_{WG} = N_S \bullet (R+1)$$

Lubrication

Suggested oil levels are shown below. When using grease lubrication, the grease should be applied generously inside the flexspline, the wave generator bearings, and on the teeth of the circular spline. Fill approximately 30% of the volume with grease.

Oil Changes: Oil changes are suggested after 100 hours of operation and at intervals of 1000 running hours thereafter.

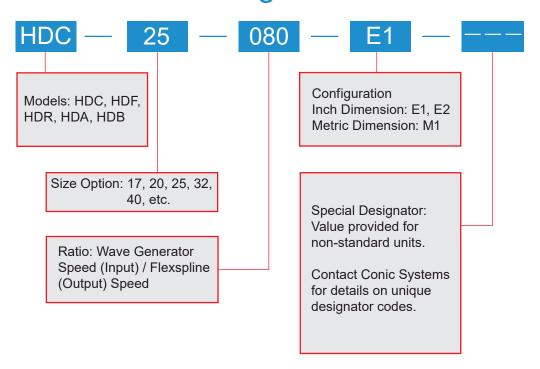
Grease Changes: When operating under nominal torque, grease should be changed after approximately 1000 hours of operation. Light duty operation may allow for longer intervals between changes. To change grease, completely disassemble and clean units before re-greasing.


Component Assembly

- 1 Clean all components prior to assembly and installation.
- 2 The gearing components must be maintained as a matched set.
- 3 Coat the non-bolting surfaces of each component with a thin layer of lubricant to protect against rust and to ease assembly.
- 4 If dowel pins are used for flexspline mounting, match drill the output shaft prior to dowel pin installation.
- When a clamp ring is used to mount an HDC flexspline, insure the ring OD is less than the diameter of the flexspline's mounting boss. Mounting rings require an adequate radius at its OD to prevent damage to the mating flexspline diaphragm surface.
- To assemble, insert the wave generator into the open end of the flexspline. Slightly tilting the wave generator during installation may ease the process.

7 Slide the circular spline over the flexspline. For cup style harmonic gears, sliding from the closed end is generally easier and preferred. Slowly rotating the wave generator eases installation.

8 If possible, check the engagement symmetry to ensure there is an equal amount of space between the flexspline and circular spline where the teeth are not engaged. "A1" should be equal to "A2". If the assembly is not symmetric, disassemble and start the assembly process again. An incorrectly aligned assembly will function, but it will be subject to reduced life and performance.



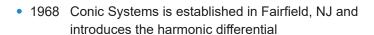
Technical Notes

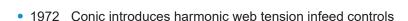
Conic recommends limiting the maximum acceleration, deceleration, and momentary peak torque to 150% of the rated torque for most applications. If higher peak torque is required for a given drive, please contact Conic's Engineering Department for assistance in evaluating the drive's suitability for the applications.

Efficiency, spring rate, inertia, maximum speed, and back driving torque vary with drive size, style, and ratio. Contact Conic's Engineering Department for data on a particular drive selection.

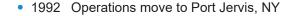
Ordering Codes

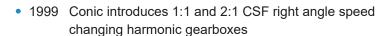
Disclaimer


Notice: All efforts have been made to assure that the information in this catalog is complete and accurate. However, Conic Systems is not liable for any errors, omissions, or inaccuracies in the reported data. Conic Systems reserves the right to change the product specifications, for any reason, without prior notice. Customers are responsible for determining product applicability to any particular application.


Our History

Since we introduced the first harmonic gearing differential in 1968, Conic Systems has been focused on providing the highest quality, longest lasting harmonic gearing systems and controls to customers worldwide. Today, our product lines include harmonic servo gearheads, speed changing and phase shifting harmonic differential transmissions, harmonic gearing component sets, and a wide array of industrial control modules. We also offer custom solutions, repair, replacement, and rebuilding services for all brand harmonics.


Equipment and capabilities include: super precision turning, 4 axis milling, Liebherr gear cutting, Wenzel involute and non-involute gear and cutter inspection, single flank spiral bevel gearing inspection, tactile and optical CMM measuring, metallurgical sampling/mounting/polishing, sub 1 arc-sec positional accuracy testing, 0.2 arc-sec repeatability testing resolution, programmable dynamic torque-speed testing, Rockwell hardness and Vickers micro hardness testing, dynamic FEA analysis, full compliment of manufacturing, engineering, and quality inspection equipment and software suites.



1991 Conic introduces digital HDD draw control systems

1994 Conic introduces 1:1 HDB shaft mount harmonic differentials

• 2004 Conic acquires Datatran Labs

- 2007 Conic establishes NAC Harmonic Gearing in Jacksonville, FL
- 2016 Conic establishes Tetragon Labs in Jacksonville, FL for Research & Development
- 2018 Conic introduces harmonic gearing servo gearheads

Visit www.conicsystems.com for information on additional Conic product lines, engineering data, drawings, and 3D model downloads.

CSF Short Cup Series – A high performance, compact, zero backlash series of drives. The CSF utilizes a proprietary non-involute tooth form for greater load capacities and is offered in standard sizes with nominal capacities to 647 Nm and ratios of 50:1 to 160:1.

LT Lifetime Series Servo Gearheads – Available in four sizes with nominal capacities to 120 Nm, the LT Series offers the advantages of zero backlash harmonic gearing in an industrial servo gearhead. It is available in NEMA 17, 23, 34, & 42 mounts as well as metric configurations with adapters to meet customer specified motor mounting requirements.

CSF and SHF Units with Integrated Cross Roller Bearings – Designed to meet common configurations of robotic and automation applications, Conic offers enclosed drives with integrated cross roller bearings. These compact, high performance designs simplify mounting and are customizable to meet customer requirements.

Custom Engineered Drives – Conic offers custom harmonic gearing solutions to meet application needs. Examples include ultra-short cup designs for robotic and medical applications and low cost drives for high volume automotive and energy applications.

Right Angle, Shaft Mount & Foot Mount Harmonic Differentials — Conic offers a wide variety of speed changing & phase shifting harmonic differential transmissions. Typically used in printing, packaging, and converting applications, Conic harmonic differentials are designed to withstand high loads in demanding applications like chill stands and rotary cutters. Units are offered in nominal capacities to 4000 Nm.

Harmonic Gearing Systems Since 1968

Phone: 845-856-4053 • Toll Free: 888-757-2547 • www.conicsystems.com info@conicsystems.com • 11 Rebel Lane, Port Jervis, NY 12771